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This paper describes an analytical and experimental investigation which
compares the feedforward control of harmonic and random sound transmission
into an acoustic cavity. A rectangular enclosure is considered that has "ve
acoustically rigid walls and a #exible plate on the remaining side through which
a plane acoustic wave is transmitted into the enclosure. The control systems are
designed to reduce the acoustic potential energy inside the enclosure when the
incident sound is either harmonic or random. Three control con"gurations
classi"ed by the type of actuators are investigated both theoretically and
experimentally. They are (i) use of a single point-force actuator, (ii) use of a single
acoustic piston source and (iii) simultaneous use of both a point-force actuator and
an acoustic piston source. It is shown that the con"guration of both acoustic and
structural actuators is desirable for the active control of both harmonic and
random sound transmission into a coupled structural}acoustic system whose
response is governed by plate and cavity-controlled modes.
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1. INTRODUCTION

The active control of sound transmission into acoustic enclosures has been of
interest in recent years because of increasing demands for a quieter environment
[1]. One particular problem that has received much attention has been the active
control of harmonic sound transmission into aircraft cabins. The noise source in
this case is the propellers, and the noise has been controlled by loudspeakers inside
the cabin [2], or structural actuators [3]. Numerous laboratory-scale studies have
also been conducted on the active control of harmonic sound transmission into
a cavity using structural actuators; see, for example, references [4}6]. Kim and
Brennan [7, 8] undertook a recent study on a simple laboratory-scale system to
investigate the use of both acoustic and structural actuators to control harmonic
sound transmission into an acoustic cavity. They concluded that there was some
merit in using a combination of structural and acoustic actuators.

The active control of random sound transmission into an enclosure is a more
di$cult problem. It has been studied by van den Dool et al. [9], who were
2-460X/99/380549#23 $30.00/0 ( 1999 Academic Press
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interested in controlling the noise generated by rocket motors at launch, from being
transmitted into the playload bay of the Ariane 5. They used either loudspeakers or
PZT patches attached to the structure, and concluded that either system would
work, but many structural actuators were required because of their limited output.
Sampath and Balachandran [10] conducted a laboratory scale study on the control
of random sound into an enclosure. They used a feedforward control strategy with
PZT patches as the actuators and distributed PVDF structural sensors and
a microphone as the error sensors. They found that better results were achieved
when only the microphone was used as the error sensor.

The work presented here is a theoretical and experimental investigation
into the feedforward active control of random sound transmission into
a structural}acoustic coupled system by using both structural and acoustic
actuators. To accomplish this task a multi-channel version of Wiener "lter theory
[11}13] is used. The results achieved for random sound are then compared with the
results achieved for harmonic sound transmission using the same actuator
con"gurations. The paper is organized as follows. Following the introduction, an
analytical model is formulated in section 2, which leads to the simulations for
a simple rectangular enclosure presented in section 3. The experimental work is
reported in section 4, where o!-line feedforward controllers for harmonic and
random sound control are implemented using plant models identi"ed from
measurements. These results are compared with the predictions made by using the
analytical model. Finally, the paper is closed with some conclusions in section 5.
The appendix at the end describes the details of the analytical model for
structural}acoustic coupled systems.

2. FEEDFORWARD CONTROL OF THE TRANSMISSION OF SOUND INTO
AN ACOUSTIC ENCLOSURE

2.1. PHYSICAL SYSTEM MODELLING

Consider an enclosure surrounded by an acoustically rigid wall within which
a #exible panel is "tted as shown in Figure 1. Three separate sets of co-ordinates are
used to describe the system; co-ordinate x is used for the acoustic "eld in the cavity,
co-ordinate y is used for the vibration of the structure, and co-ordinate r is used for
the sound "eld outside the enclosure. An acoustic plane wave is incident on the
#exible structure, and the aim of the active control system is to globally minimize
the sound transmission through the #exible structure into the enclosure.
Feedforward control is considered for both harmonic and random sound, and the
di!erences between the control performances are investigated for both types of
excitation when acoustic and structural actuators are used as secondary sources.
A reference microphone can be seen outside the acoustic enclosure, and the
pressure sensed by this transducer is denoted p

mic
. This is used to measure the

incident acoustic wave, and to provide a reference signal to drive both the acoustic
source and the structural force actuator via the feedforward controllers, H

q
(ju) and

H
f

(ju) respectively. In this section the theoretical framework to study this problem
is formulated in the frequency domain.
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Following the work of the control of harmonic sound transmission described by
Kim and Brennan [7, 8], the time-averaged acoustic potential energy inside the
cavity of volume < is adopted as the global measure of control performance and is
given by [14, 15]

E
p
"(</4o

0
c2
0
) aH a, (1)

where o
0

and c
0

denote the density and the speed of sound in air, respectively, and
the acoustic modal amplitude vector a consists of the complex amplitudes of the
acoustic pressure modes a

n
(u). Since N-number of acoustic modes are assumed to

contribute to the acoustic pressure in the frequency range of interest, the vector a is
of length N, and the superscript H denotes the Hermitian transpose.

The acoustic modal amplitude vector a has three contributions; the responses
from the incident plane wave, the control force f

c
, and the acoustic control source q

c
and can be written as [7, 8]

a"(I#Za Ycs)~1 Za (CYsgp#dq q
c
#CYsdf fc). (2)

A derivation of this expression is presented for the general case of multiple acoustic
and structural actuators in Appendix A. Since only a single acoustic actuator q

c
and

a single structural actuator f
c
are considered, vectors dq and df are used instead of

matrices Dq and Df in equation (A16) respectively. Za and Ys are the uncoupled
modal acoustic impedance and uncoupled modal structural mobility matrices
respectively. The matrix Ycs is the coupled modal structural mobility matrix and the
matrix C is the structural}acoustic mode shape coupling matrix. The vector gp is
the generalized modal force vector due to the primary plane wave excitation which
can be measured by the reference microphone denoted by p

mic
. The N-length vector

d
2

determines the coupling between acoustic mode shapes and the location of the
acoustic source at x

q
, whereas the M-length vector d

&
determines the coupling

between structural mode shapes and the location of the force actuator at y
f
.

Substituting equation (2) into equation (1) gives the Hermitian quadratic form of
complex variables q

c
and f

c
.

In practice, modal sensors that measure acoustic modal amplitudes are not
available. An alternative approach is to use microphones to measure acoustic
pressure #uctuations at a number of sensor locations, and then sum the squares of
the pressure amplitudes measured at these locations to give an approximation to
the acoustic potential energy. The approximation is given by [15]

EK
p
"

<
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c2
0
¸

L
+
l/1

D p (x
l
, u) D2, (3)

where p (x
l
, u) is the complex pressure amplitude at the lth sensor location.

Equation (3) can also be written as

EK
p
"(</4o

0
c2
0
¸) pH p, (4)

where p is the ¸-length vector whose lth component is p (x
l
, u), and is related to the

modal amplitude vector a by

p"(T
L
a , (5)
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where the (¸]N)-size matrix (T
L

contains the N modal amplitudes at ¸ sensor
locations. This can be substituted into equation (4) which also gives the Hermitian
quadratic form of complex variables q

c
and f

c
. The solution which minimizes

equation (4) gives the optimal control sources for control of a harmonic incident
acoustic wave, which has been discussed by Kim and Brennan [7, 8].

2.2. CONTROL SYSTEM MODELLING

Instead of using the Hermitian quadratic form, in this paper, the classical Wiener
"lter theory is employed as an alternative approach. This is because the aim is to
solve the achievable attenuation in sound transmission for a spectrally white
random incident wave as well as for a harmonic incident wave. The Wiener "lter,
which results from the solution of Wiener}Hopf equation, is an optimal "lter that
o!ers the minimum mean-square error in a stationary random signal environment
[11}13]. Kim [16] showed that the Wiener "lter solutions with and without the
constraint of causality o!er the optimal controllers for random and harmonic sound
"elds respectively. Thus, in this section the theoretical model described in the
previous section is reorganized in the time domin to apply the Wiener "lter theory.

To set up the problem as a multiple-input}multiple-output (MIMO) Wiener
"lter problem, the feedforward controller can be drawn as a block diagram as
shown in Figure 2(a). Two linear-time-invariant controllers H

q
( ju) and H

f
( ju) are

used to control the secondary sources q
c
and f

c
in order to minimize the ¸-length

error vector p in the mean square sense. The ¸-length vector G
p
( ju) denotes the

primary plant frequency response function from the incident plane wave to the
acoustic pressure vector p, and G

q
(ju) and G

f
( ju) denote the secondary plant

frequency response functions from the acoustic and structural actuators to the
acoustic pressure vector p respectively. Because all systems are assumed to be linear
time invariant, it can be redrawn as a 2-input ¸-output Wiener "lter problem as
shown in Figure 2(b), and the desired and received signal vectors can be written as

D(u)"Gp (ju) p
mic

, Rq (u)"Gq (ju) p
mic

, R
f

(u)"G
f

(ju) p
mic

, (6a}c)

where from equations (2) and (5) the plant frequency response functions are
G

p
( ju)"WT

L
(I#Za Ycs)~1 Zs CYs gq/pmic

, G
q
( ju)"WT

L
(I#Za Ycs)~1 Zadq and

G
f

( ju)"WT
L

(I#Za Ycs)~1 ZaCYsdf . It is useful to draw a time}domain version of
Figure 2(b) so that standard techniques can be used to calculate the appropriate
Wiener "lters, and this is shown in Figure 2(c). The received signals and impulse
responses of the Wiener "lters can be expressed in vector}matrix form, and are
given by

r (t)"[r
q
(t) r

f
(t)], h (t)"Mh

q
(t) h

f
(t)NT , (7a, b)

where the impulse response functions of the Wiener "lters are
h
q
(t)"F~1 MH

q
(u)N, h

f
(t)"F~1 MH

f
(u)N where F~1 denotes the inverse

Fourier transforms. The desired and received signal vectors can be obtained from
the time}domain versions of equations (6a}c) as

d(t)"g
p
(t) * p

mic
(t), r

q
(t)"g

q
(t) * p

mic
(t), r

f
(t)"g

f
(t) * p

mic
(t), (8a}c)



Figure 1. Feedforward control of sound transmission using both structural and acoustic actuators.
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where the operator * denotes the convolution integral, and the impulse response
functions are obtained from the corresponding frequency response functions, i.e.
gp (t)"F~1 MGp (u)N, and g

q
(t)"F~1 MG

q
(u)N, and g

f
(t)"F~1 MG

f
(u)N. In

addition, the ¸-length estimated signal vector is y(t)"r(t)* h(t).
Now the problem is to design the Wiener "lters h

q
(t) and h

f
(t) which minimize

the mean-square error J"E [eT (t)e (t)] when the desired and received signals are
stationary random. The operator E [ f ] denotes the ensemble average, and the error
vector e(t)"d(t)#y(t) is measured with the ¸ microphones inside the cavity. Thus,
a direct relationship between the physical system in Figure 1 and the block diagram
in Figure 2(c) which represents a 2-input-¸-output Wiener "lter problem has been
established.

The optimal "lters can be obtained by solving the Wiener}Hopf equations for the
system shown in Figure 2(c). The Wiener}Hopf equations for the 2-input ¸-output
system are an extension of the single-input}multiple-output case described by
Nelson et al. [17], and are given by [16]
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Figure 2. A block diagram of the feedforward control of sound transmission using both an acoustic
and a structural actuator. (a) Feedforward control of sound transmission; (b) 2 input N output Wiener
"lter problem (frequency domain); (c) time}domain block diagram representation.
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Note that the integral equations are subject to the constraint of causality q
1
*0

and the "lters are intrinsically constrained to be causal since q
2
*0. The variables

q
1

and q
2

are arbitrary time variables, h
oq

(q
2
) and h

of
(q

2
) are the impulse res-

ponse functions of the optimal "lters, and R
qq, l

(q)"E [r
q, l

(t) r
q, l

(t#q)] and
R

ff, l
(q)"E [r

f,l
(t) r

f, l
(t#q)] are the respective autocorrelation functions of

the received signals at the lth "lter block. R
qf, l

(q)"E [r
q, l

(t) r
f,l

(t#q)],
R

fq, l
(q)"E [r

f,l
(t) r

q, l
(t#q)], R

qd, l
(q)"E [r

q, l
(t) d

l
(t#q)] and R

fd, l
(q)"

E [r
f, l

(t) d
l
(t#q)] are cross-correlation functions. When the optimal "lters are

implemented, the minimum mean-square error is given by [16]
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which can be normalized by the mean-square error without control +L
l/1

R
dd, l

(0) to
give
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o
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) +L
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When the incident wave in Figure 1 is a harmonic acoustic wave, the optimal
controllers can be easily obtained by solving the Wiener}Hopf equation, equa-
tion (9), without the constraint of causality [16]. In this case, the desired
and received signals are harmonic, and the solution for this case will be described
in section 2.3. When a random acoustic wave is incident, the optimal controllers
are the solution of equation (9). In general, however the Wiener}Hopf equation
in the continuous time}domain either does not have an analytic solution as a
closed form or is very complicate to solve. In this paper (section 2.4), thus
the discrete time}domain version is considered, which does have a closed-
orm solution. This is also advantageous when digital "lters are imple-
mented.

2.3. CONTROL OF HARMONIC SOUND

When designing an optimal controller for harmonic sound, the constraints of
causality in equation (9) can be relaxed. Thus the simple Fourier transforms of
equations (9a, b) can be written in matrix}vector form as

A(u) H
uo

( ju)"!b(u), (12)

where H
uo

( ju) is the unconstrained Wiener "lter, and the input spectrum matrix
A(u) is Herimitian and is given by

A(u)"
L
+
l/1
C
S
qq,l

(u) S
qf,l

(u)
S
fq,l

(u) S
ff,l

(u)D , (13)

and the elements of the matrix are S
qq,l

(u)"E [R*
q,l

(u)R
q,l

(u)], S
qf,l

(u)"
E [R*

q,l
(u)R

f,l
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f,l
(u)R

q,l
(u)] and S

ff,l
(u)"E [R*

f,l
(u)R

f,l
(u)]

where the superscript * denotes the complex conjugate. The unconstrained Wiener
"lter vector and the cross-spectrum vector are given by

H
uo

( ju)"G
H

uoq
( ju)

H
uof

(ju) H, b (u)"
L
+
l/1
G
S
qd , l

(u)
S
fd , l

(u) H , (14a, b)

where H
uoq

( ju) and H
uof

( ju) are the unconstrained Wiener "lters for the acoustic
and structural actuators, respectively, and S

qd,l
(u)"E [R*

q,l
(u)D

l
(u)] and

S
fd,l

(u)"E [R*
f,l

(u)D
l
(u)]. If only one rather than two actuators is used, matrix

A(u) becomes either A(u)"+L
l/1

[S
qq , l

] for the acoustic actuator or A(u)"+L
l/1[S

ff , l
] for the structural actuator. Note if all systems and signals are deterministic,
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the averaging process E [ ' ] can be omitted. Equation (12) can be rearranged to
give the unconstrained Wiener "lter

H
uo

( ju)"!A~1 (u)b(u). (15)

The optimal source strength of actuators q
c

and f
c

can be obtained from the
relationships H

uoq
(ju)"q

c
/p

mic
and H

uof
(ju)"f

c
/p

mic
respectively. The normal-

ized minimum mean-square error can be written similarly as equation (11) as

J@
o
(u)"1#AbH (u) H
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(u)/+L

l/1
S
dd,l

(u)B , (16)

where the denominator +L
l/1

S
dd , l

(u) is the mean-square error without control. By
using equation (15) it can be rewritten as

J@
o
(u)"1!AbH (u) A~1 (u)b (u)/+L

l/1
S
dd, l

(u)B . (17)

Equations (15) and (17) o!er the optimal controllers and the normalized minimum
of the approximation of the time-averaged acoustic potential energy for the case of
a harmonic incident wave respectively.

2.4. CONTROL OF RANDOM SOUND

When white noise is incident on the plate, the digital optimal controllers can be
obtained by solving the discrete forms of equations (9a, b) which can be written as

I~1
+
i/0

L
+
l/1

h
oq
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(n!i)#h
of

(i) R
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(i) R
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(n!i)"!

L
+
l/1

R
fd, l

(n), n*0, (18b)

where I is the length of the "nite impulse response (FIR) Wiener "lters. Equations
(18a, b) can be rewritten in vector}matrix form as

Ah
0
"!b, (19)

where the input correlation matrix A is given by
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L
+
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A
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A
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A
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A
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D , (20)

which is a matrix consisting of sub-matrices that can be expressed as, for example,
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where R
qf, l

(i)"E [r
q,l

(l) r
f,l

(l#i)]. Although the element matrix A
qf, l

itself is not
symmetric because R

qf, l
(i)OR

qf, l
(!i), it should be noted that the whole matrix

A is symmetric because A
qf
"AT

fq
. The impulse response functions of the plants

g
p
(t), g

q
(t) and g

f
(t) given in equations (8a}c) are assumed to be modelled by

J-length FIR "lters. The (2I)-length column vectors are given by
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q,l

(l) d
l
(l#i)]. If only one rather

than two actuators is used, the matrix A becomes either A"+L
l/1

[A
qq , l

] for the
acoustic actuator or A"+L

l/1
[A

ff, l
] for the structural actuator. The matrix in this

case again becomes real and symmetric.
The causally constrained Wiener "lter can be determined by rearranging

equation (19) to give

h
0
"!A~1 b (23)

and the discrete form of the normalized minimum mean-square error in equation
(11) can be written similarly as equation (17) as

J@
0
"1!AbT A~1 b/

L
+
l/1

R
dd, l

(0)B. (24)

If the incident acoustic plane wave is white noise, one can equivalently replace it by
an impulse as far as the classical Wiener "lter theory is concerned [13, 16]. In other
words, the control problem for the white noise incident wave is equivalently
transformed to active control of sound transmission for an impulsive incident wave.
The advantage of this approach is much less numerical computations, since it
signi"cantly shortens the time consuming convolution and correlation processes
involved with random signal inputs as in equations (8) and (18). In the simulations
in this paper, white noise is replaced by an impulse for p

mic
in equation (8). Due to

the replacement an easier deterministic and systematic approach can be used to the
stochastic optimal control problem.

3. SIMULATIONS

To compare the control performances for harmonic and random sound
discussed in section 2, a duct-like rectangular enclosure is considered that has "ve
rigid walls and a simply supported #exible plate on the top as shown in Figure 3.
This behaved as a one-dimensional wave system in the low frequency range, and
was chosen for the convenience of analysis and experimental work, without loss of
generality of the physics of sound transmission. Three co-ordinates systems, x, y,
r are used to specify the cavity, the plate and the external sound "eld respectively.
The #exible aluminium plate is assumed to be "tted in an in"nite ba%e, which is not
shown for clarity. The dimensions of the cavity are ¸

1
]¸

2
]¸

3
where ¸

1
"1)5 m,

¸
2
"0)3 m, and ¸

3
"0)4 m, and the thickness of the plate is 5 mm. A plane wave is



Figure 3. Feedforward control of sound transmission into a rectangular enclosure.

TABLE 1

Material properties of materials used in the simulations and experimental work

Material Density Phase speed Young's modulus Poisson's Damping
(kg/m3) (m/s) (N/m2) ratio (l) ratio (f)

Air 1)21 340 * * 0)01
Al 2770 * 71]109 0)33 0)01
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assumed to be incident on the plate with angles of (u"03) and (h"453) where u is
the angle from the co-ordinate y

1
on the plate and h is the angle of incidence from

the plate. The incident wave is measured with the reference microphone located at
the right-hand edge of the plate and its signal is used to drive both the acoustic and
structural actuators via the controllers H

q
( ju) and H

f
( ju) respectively.

The approximated acoustic potential energy, which is the measure of control
performance as discussed in section 2, is measured by using the 11 equally spaced
microphones along the centre line of the duct. The acoustic control source is
a loudspeaker of radius 0)15 m which is "tted at the left end with its centre at (0,
¸
2
/2, ¸

3
/2), and a point force located at (9¸

1
/20, ¸

2
/2) on the plate is used as the

structural actuator. The material properties of air and aluminium (A1) used in this
simulations are listed in Table 1. The modal damping ratios of the plate and the
cavity were assumed to be 0)01, and the time constant of the "rst acoustic mode was
taken to be 0)2 s. A total of four acoustic and six structural modes were assumed to
contribute to the coupled responses within the frequency range of interest. Table
2 shows the natural frequencies of the uncoupled structural and acoustic systems
and their geometric mode shape coupling coe$cients normalized by their



TABLE 2

Natural frequencies and geometric mode-shape coupling coe.cients of the uncoupled
structural and acoustic systems

Order Plate 1 2 3 4 5 6
Type (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

Cavity Freq. 141 157 184 222 270 330
(Hz)

1 (0,0,0) 0 1)00 0 0)33 0 0)20 0
2 (1,0,0) 113 0 0)94 0 0)38 0 0)24
3 (2,0,0) 227 !0)47 0 0)81 0 0)34 0
4 (3,0,0) 340 0 !0)57 0 0)81 0 0)31
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maximum value. (m
1
, m

2
) and (n

1
, n

2
, n

3
) indicate the indices of the mth plate mode

and the nth cavity mode. Plant responses were calculated up to 512 Hz with
a frequency interval of 0)5 Hz. Modes above 340 Hz were excluded from the
simulations in order to reduce numerical errors involved with inverse Fourier
transform calculations. Reasonably correct predictions at low frequencies under
340 Hz were considered su$cient to investigate control mechanisms.

Three control con"gurations, classi"ed by the type of actuators are investigated
both theoretically and experimentally. They are (i) use of a single point-force
actuator, (ii) use of a single acoustic piston source, and (iii) simultaneous use of both
a point-force actuator and an acoustic piston source.

Before considering the control of random sound it is instructive to review the
behaviour of the control system for harmonic sound. This has been discussed in
detail for the three control con"gurations in references [7, 8]. The acoustic
potential energy with and without control is calculated by using the procedure in
section 2.3. They are shown in Figure 4(a) for the acoustic actuator alone, Figure
4(b) for the structural actuator alone, and Figure 4(c) for both acoustic and
structural actuators. The signs && * '' and && 3 '' denote the uncoupled structural and
acoustic natural frequencies respectively. As discussed by Kim and Brennan [7, 8],
the acoustic actuator is e!ective in controlling the acoustic potential energy at
frequencies where cavity-controlled modes dominate the acoustic response of the
cavity. Whereas, the structural actuator is e!ective in controlling the acoustic
potential energy at frequencies where plate-controlled modes dominated the
response. It can be seen in Figure 4(c) that the simultaneous use of both actuators
results in very good control of sound transmission into the enclosure. Kim has
shown that the simultaneous use of both structural and acoustic actuators to
control harmonic sound transmission into a structural}acoustic coupled system
o!ers the best performance with the least number of actuators [16].

For the control of the white noise incident wave, the procedure described in
section 2.4 is used to determine the optimal Wiener "lters for the three actuator
con"gurations. Minimization of the acoustic potential energy using the acoustic
actuator is considered "rst. Figure 5(a) shows the acoustic potential energy with



Figure 4. Predicted acoustic potential energy without (solid line) and with control according to the
actuators used (dashed). The signs && * '' and &&

3
'' denote the uncoupled structural and acoustic natural

frequencies respectively. (a) Acoustic actuator used; (b) structural actuator used; (c) simultaneous use
of both acoustic and structural actuators.
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and without control. The solid line is the acoustic potential energy without control,
and the potential energies with control are shown for both random (dashed) and
harmonic (dotted) sound for comparison. The constrained Wiener "lter is
a 400-coe$cient FIR "lter and its response is shown in Figure 5(b). As stated



Figure 5. Predicted control performance with optimal constrained and unconstrained feedforward
controllers on the attenuation of sound transmission into the rectangular enclosure shown in Figure 3.
Acoustic potential energy without control (solid), acoustic potential with constrained (dash) and
unconstrained (dotted) optimal controllers. (a) Acoustic potential energy with and without control;
the acoustic actuator is the secondary source; (b) impulse response of the constrained optimal
controller with an acoustic secondary source; (c) acoustic potential energy with and without control;
the structural actuator is the secondary source; (d) impulse response of the constrained optimal
controller with a structural secondary source; (e) acoustic potential energy with and without control;
both acoustic and structural actuators are used as secondary sources. (f) impulse response of the
constrained optimal controllers; acoustic (upper), structural (lower).
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TABLE 3

Comparison of control performances according to the use of the actuators (simulation)

Use of the actuators Energy ratio J@
o

(%) Overall reduction J@
o
(dB)

Harmonic Random Harmonic Random

Acoustic source 39)13 42)94 !4)1 !3)7
Point force 13)16 26)69 !8)8 !5)7

Both actuators 4)6 7)0 !13)4 !11)5
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earlier, the random and harmonic sound controllers are the casually constrained
and unconstrained optimal Wiener "lters respectively. It can be seen that control
performance for harmonic sound is better than that for random sound at all
frequencies, but there is very little di!erence at frequencies greater than about
100 Hz. Overall performances of each controller in terms of the normalized
mean-square error calculated by using equations (17) and (24) are tabulated in
Table 3. It can be seen that there is only a small overall performance di!erence
between the harmonic and random noise cases.

Figure 5(c) shows the control performance when the structural actuator is used
as the secondary source, and Figure 5(d) shows the impulse response of the
constrained Wiener "lter. Examination of Figure 5(c) shows, that although
the harmonic controller reduces the acoustic potential energy at all frequencies, the
random controller does not. The energy is reduced considerably at resonance
frequencies, where there is an increase in the predictability of the cost function, but
there is an increase in the potential energy at other frequencies. The overall control
performance is shown in Table 3. There is a di!erence of about 3)1 dB between
harmonic and random sound excitation for the structural actuator, and this should
be compared with the performance di!erence of about 0)4 dB for the acoustic
actuator. This is because the wave propagation delays from the structural actuator
to acoustic responses measured by the microphones are larger than those from the
acoustic actuator. Control performance of the feedforward controllers for random
sound depends mainly upon the time taken for the incident wave to travel from the
reference microphone to the error microphones via the secondary actuators. In the
application discussed here, it takes longer for the structural actuator, rather than
the acoustic actuator, to control the error microphone responses. Since the physical
system is dispersive [18], it can be more precisely investigated by examining the
phase angle di+erence between the desired signal set and the received signal set [16].

When both acoustic and structural actuators are used, the potential energy with
and without control is shown in Figure 5(e), and the impulse responses of the
optimal "lters are shown in Figure 5(f). It is clear that the control performance with
both actuators is far superior to that when individual actuators are used, even when
the excitation is random. By examining Figures 5(b), (d) and (f), it can be seen that
the controllers are quite di!erent in the con"guration where both actuators are
used. A striking di!erence is that the impulse response of the controller for the
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acoustic actuator becomes much shorter in Figure 5(f). This is probably because
the structural actuator is controlling the low frequencies in the case. As can be seen
from Table 3, a reduction in the mean-square response of over 10 dB for both
harmonic and random sound cases is achieved for the lightly damped system
considered. Thus, it has been demonstrated that the control performance of
the hybrid system for both harmonic and random sound is superior to that when
the actuators are used separately. In addition, when both actuators are used the
performance di!erence between harmonic and random sound cases is not
appreciable.

4. EXPERIMENTAL WORK

To validate the analytical model and to check the predicted characteristics of the
control systems discussed above, some experiments were performed on a system
similar to that shown in Figure 3. A photograph of the experimental set-up is
shown in Figure 6(a). This shows an elevated large loudspeaker that generates the
acoustic incident wave, which then excites the aluminium plate "tted inside
a wooden ba%e. The speaker was positioned about 2 m from the right-hand edge of
the plate and was facing down at an angle of approximately 453. In Figure 6(b), the
reference microphone measuring the incident wave can be seen close to the
right-hand edge of the plate. The AVC Instrumentation Series 712 inertial
piezoelectric actuator with a proof mass of 150 g, which was used as the point force
control actuator, can also be seen in the central area of the plate. The duct-like
rectangular enclosure was constructed with the same dimensions of the simulation
model considered in the last section (the cavity had dimensions of ¸

1
]¸

2
]¸

3
where ¸

1
"1)5 m, ¸

2
"0)3 m, and ¸

3
"0)4 m, and the thickness of aluminium

plate was 5 mm). The control speaker was "tted into the left-hand face of the
enclosure as shown in Figure 3. To make the acoustically rigid boundary
conditions, the wooden walls were made of 25 mm thick plywood and were
surrounded by 75 mm deep sand layers packed by an extra container as shown in
Figure 6(c). A simply supported boundary condition for the plate was fabricated
with 1)25 mm thick steel strips bolted along the edge of the plate as shown in Figure
6(d). The design concept relies upon the fact that the thin strip is relatively rigid to
in-plane motion but is #exible to rotation.

The main purpose of the experimental work was to identify the system impulse
responses of the primary and secondary plants. O!-line optimal control of
harmonic and random sound transmission could then be performed using the
identi"ed plant impulse response functions in a similar way to the procedure used
in the simulations presented in the previous section. Note however in the previous
section the impulse responses were obtained from the direct inverse Fourier
transforms of the avilable plant frequency response functions. A single moving
microphone was used to measure the sound response at 11 equi-distance positions
along the duct-like enclosure. The primary plant was identi"ed by using signals
from the error microphone at 11 positions inside the cavity and the signal from the
reference microphone when the system was excited with the elevated loudspeaker
outside the cavity. The acoustic and structural secondary plants were identi"ed by



Figure 6. Experimental set-up; (a) General arrangement; (b) side-view showing the secondary
actuator (centre of plate) and reference microphone (right-hand side of plate); (c) experimental set-up
disassembled showing the outer casing and the insulating sand; (d) diagram showing the plate-"xing
arrangements; r A1 plate 5 mm, s steel strip, t Ba%e, u Adapter (steel), v aluminium angle, and
w 25 mm plywood.
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using the error microphone responses at the 11 positions to the input signals of the
control speaker and the force actuator, respectively. A low-passed version of
random noise was used to excite the three actuators for the system identi"cation of
the primary and secondary plants. The merits of using this type of signal actuation
were that higher acoustic modes were not excited, and the aliasing error on
sampling was minimized.

A "nite impulse response (FIR) "lter of 1024 coe$cients was used to model the
impulse response of each plant. Since the mean-square error was adopted as the
criterion of modelling performance, the identi"cation of each plant was
a single-input}single-output Wiener "lter problem. General discussions on system
identi"cation problems are available in the literaure; see, for example, reference
[19]. Both excitation and error microphone signals were measured simultaneously
for each plant over a 40 s period with the sampling frequency 1024 Hz so that each
had 40 960 data points. In the identi"cation of G

q
(u) the derivative of source

strength was used rather than the source strength as this was directly measurable
using an accelerometer attached to the speaker. Long-length "lters were required



Figure 7. Experimental control performance with optimal constrained and unconstrained
feedforward controllers on the attenuation of sound transmission into the rectangular enclosure
shown in Figure 3. Acoustic potential energy without control (solid), acoustic potential with
constrained (dash) and unconstrained (dotted) optimal controllers. (a) Acoustic potential energy with
and without control; the acoustic actuators is the secondary sources; (b) impulse response of the
constrained optimal controller with an acoustic secondary source; (c) acoustic potential energy with
and without control; the structural actuator is the secondary source; (d) impulse response of the
constrained optimal controller with a structural secondary source; (e) acoustic potential energy with
and without control; both acoustic and structural actuators are used as secondary sources; (f) impulse
response of the constrained optimal controllers; acoustic (upper), structural (lower).
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because the systems were lightly damped. However, this imposes a heavy
computational burden since the identi"cation method involves matrix inversion of
a large input auto-correlation matrix. Although this was not an issue in the o!-line
control system considered in this work, if real time control is to be implemented
then an alternative method would be to use in"nite-impulse-response (IIR) "lters
using an auto-regressive-moving-average (ARMA) model as discussed by
Vipperman et al. [20]. Accurate modelling with error values less than 1% was
achieved for most primary and secondary plants. In general, poor coherence
between the input excitation and output response signals causes large modelling
errors.

By using the impulse responses identi"ed from the experiment, the theoretical
optimal control models developed in section 2 were used. The control performance
results are presented in Figure 7, which has the same format as Figure 5 so that the
experimental results can be compared easily with the predictions. It can be seen
that below about 100 Hz the measured results are contaminated by noise due to
low-sensitivity between the external reference and internal error microphones. At
high fequencies, the di!erences between the experimental results and the
predictions was due to the practical di$culty of generating a plane wave with
a "xed incident angle.

Examination of Figures 7(a) and 7(c) shows that, as predicted, the acoustic
actuator is e!ective in controlling harmonic sound at frequencies close to the
cavity-controlled modes (113, 227)5 and 339 Hz), and the structural actuator is
e!ective in controlling harmonic sound at plate-controlled modes (143, 160, 180)5
271 and 328)5 Hz). As predicted, by using both actuators better control
performance can be achieved at all frequencies which can clearly be seen in Figure
7(e). Some di!erences in the predicted and experimetnal impulse response functions
for the controllers are thought to be because of the poorly correlated measured
responses at low frequencies.

A general observation is that the experimental results are largely as predicted by
the analytical model for all three actuator con"gurations, and for both random
and harmonic sound control. The overall control performances are tabulated in
Table 4. It can be seen that the use of both types of actuators o!ers a better
performance than the separate use of each actuator in both harmonic and random
sound "elds.
TABLE 4

Comparison of control performances according to the use of the actuators (experiment)

Use of the actuators Energy ratio J@
o

(%) Overall reduction J@
o
(dB)

Harmonic Random Harmonic Random

Acoustic source 30)25 33)63 !5)2 !4)7
Point force 13)58 21)18 !8)7 !6)7

Both actuators 7)93 12)18 !11)0 !9)1
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5. CONCLUSIONS

The active control of random sound transmission through a #exible plate into an
acoustic enclosure has been considered, and its control performance has been
compared with that for the active control of harmonic sound transmission. In
particular, the role of acoustic and structural actuators for the control of harmonic
and random sound has been investigated. A theoretical model to design optimal
controllers for harmonic and random sound has been presented using the
theoretical basis of the Wiener "lter. The theoretical model is based on two
fundamental facts. Firstly, the Weiner "lters with and without the constraint of
causality are the optimal controllers of stationary random sound and harmonic
sound, respectively. Secondary, as far as Wiener "lter design is concerned, white
noise is equivalently replaced by an impulse. By using these facts, a systematic and
deterministic approach has been applied to design optimal controllers for harmonic
and random sound waves when they are transmitted to a duck-like rectangular
acoustic enclosure.

Both theoretical and experimental results obtained demonstrate that in
harmonic sound control, the acoustic actuator is e!ective in controlling
cavity-controlled modes while the structural actuator is e!ective in controlling
plate-controlled modes. In random sound control, the acoustic actuator achieves
reductions similar to that for the control performance for harmonic sound, but
reductions achieved by the structural actuator are diminished. This is because the
wave propagation delays from the acoustic actuator to the acoustic responses
measured by error microphones are smaller than those from the structural
actuator. From the simulations and experimental results it can be concluded that
the hybrid con"guration of both acoustic and structural actuators is advantageous
for the active control of both harmonic and random sound transmission into
a structural-acoustic coupled system whose response is governed by plate- and
cavity-controlled modes.
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APPENDIX A: DERIVATION OF THE ANALYTICAL MODEL
OF THE STRUCTURAL-ACOUSTIC SYSTEM

The aim in this appendix is to describe the analytical model of the
structural}acoustic system shown in Figure 1. A harmonic plane wave is assumed
to be incident on the #exible structure, and wave interference outside the enclosure
between the incident and radiated waves by structural vibration is neglected. If the
acoustic pressure and the structural vibration are assumed to be described by
a summation of N and M modes, respectively, then the acoustic pressure at position
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x inside the enclosure and the structural vibration velocity at position y are
given by

p (x, u)"
N
+
n/1

t
n
(x) a

n
(u)"WT a, u (y, u)"

M
+

m/1

/
m

(y) b
m
(u)"UT b , (A1, A2)

where the N length column vectors W and a consist of the array of un-
coupled acoustic mode shape functions t

n
(x) and the complex amplitude of

the acoustic pressure modes a
n
(u) respectively. Likewise the M length column

vectors U and b consist of the array of uncoupled vibration mode shape functions
/
m

(y) and the complex amplitude of the vibration velocity modes b
m

(u)
respectively.

The mode shape functions t
n
(x) and /

m
(y) satisfy the orthogonal property in

each uncoupled system, and are normalized as follows:
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where < and S
f

are the volume of the enclosure and the area of the #exible plate,
respectively. The complex amplitude of the nth acoustic mode under structural and
acoustic excitation is given by [14]
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where s (x, u) denotes the acoustic source strength density function in the cavity
volume <, and u (y, u) denotes the normal velocity of the #exible plate of area S

f
.

The two integrals inside the brackets represent the nth acoustic modal source
strength contributed from s (x, u) and u (y, u) respectively. The acoustic mode
resonance term A

n
(u) is given by
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where ¹
a

is the time constant of the "rst acoustic mode, and u
n

and f
n

are the
natural frequency and damping ratio of the nth acoustic mode respectively.
Substituting equation (A2) into equation (A5) and introducing the modal source
strength q

n
":

V
t

n
(x) s (x, u)d<, one obtains
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where C
n,m

represents the geometric coupling relationship between the uncoupled
structural and acoustic mode shape functions on the surface of the vibrating
structure S

f
and is given by [21]
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If one uses ¸ independent acoustic control sources, q
n

can be written as
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where D
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)d<, and the lth control source strength q
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(u)

having an area of S
q, l

is de"ned at x
c, l

. Thus, the complex amplitude of the acoustic
modal pressure vector a can be expressed as

a"Za (Dqqc#Cb), (A10)

where Za"(o
0
c2
0
/<) A is the uncoupled acoustic modal impedance matrix, which

determines the relationship between the acoustic source excitation and the
resultant acoustic pressure in modal co-ordinates of the uncoupled acoustic system
[22]. The matrix A is a (N]N) diagonal matrix in which each (n, n) diagonal term
consists of A

n
, the (N]M) matrix C is the structural}acoustic mode shape coupling

matrix, the (N]¸) matrix Dq determines coupling between the ¸ acoustic source
locations and the N acoustic modes, the ¸ length vector qc is the complex strength
vector of acoustic control sources, and b is the complex vibration modal amplitude
vector.

If one assumes that the #exible structure is an isotropic plate, the complex
vibration velocity amplitude of the mth mode can be expressed as [14]
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where again o
s
is the density of the plate material, h is the thickness, and S

f
is the

area of the plate. Inside the integral f (y, u), pext (y, u), and p (y, u) denote the
force distribution function, and the exterior and interior acoustic pressure
distributions on the surface S

f
, respectively. The exterior pressure pext

(y, u) is measured by the reference microphone denoted by p
mic

in Figure 1. Because
of the sign convention used, there is a minus sign is front of p (y, u). The structural
mode resonance term B
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(u) can be expressed as
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where u
m

and f
m

are the natural frequency and the damping ratio of mth mode
respectively. Substituting equation (A1) into equation (A11), one obtains
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. If one uses K independent point force actuators, the mth mode
generalized force due to control forces, g
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, can be written as
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where D
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. Thus the modal vibration amplitude vector b can be

expressed as

b"Ys (gp#Df fc!CT a), (A15)

where Ys"(1/o
s
hS

f
) B is the uncoupled structural modal mobility matrix which

determines the relationship between structural excitation and the resultant
structural velocity response in modal co-ordinates of the uncoupled structural
system [22]. The matrix B is a (M]M) diagonal matrix in which each (m, m)
diagonal term consists of B

m
, CT is the transpose matrix of C, the (N]K) matrix

Df determines coupling between the K point force locations and the M structural
modes, gp is the generalized modal force vector due to the primary plane wave
excitation, the K length vector fc is the complex vector of structural control point
forces, and a is the complex acoustic modal amplitude vector.

Combining equations (A10) and (A15), one obtains the acoustic modal amplitude
vector for the coupled system

a"(I#Za Ycs)~1 Za (CYs g
1
#Dq qc#CYs Df fc), (A16)

where Ycs"CYs CT is de"ned as the coupled structural modal mobility matrix [22].


	1. INTRODUCTION
	2. FEEDFORWARD CONTROL OF THE TRANSMISSION OF SOUND INTO AN ACOUSTIC ENCLOSURE
	Figure 1
	Figure 2

	3. SIMULATIONS
	TABLE 1
	TABLE 2
	TABLE 3
	Figure 3
	Figure 4
	Figure 5

	4. EXPERIMENTAL WORK
	TABLE 4
	Figure 6
	Figure 7

	5. CONCLUSIONS
	REFERENCES
	APPENDIX A: DERIVATION OF THE ANALYTICAL MODEL OF THE STRUCTUREAL-ACOUSTIC SYSTEM

